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The system of equations of magneto-gasdynamics in the steady tro-para- 
meter case with the electric field in a certain given direction reduces 
to a sgsteu of tro scalar epaatlons for two scalar unknown functions, 
after the Groaeka transformation is applied. 

For rotational motion (under soue additional restrictions), the 
system obtained reduces to a linear system, after the Chaplygin trans- 
formation is used. The basic physical properties of such flows are 
studied. and conditions on their ellipticitg are obtained. Several limit- 
ing cases are considered. 

1. Symmetry integrals of magneto-gasdynamics. ‘Ike system of 
equations of ideal magneto-gasdynamics for adiabatic motion may be 
written in the form [ 1 1 

aH/iB=rotV xH, div Ii = 0 

Q/at+divpV=O, &x/i% + div psV = 0 (1.1) 

aV/at+o(V2/2+F)+(1/p)Vp=VxrotV-(1/4np)HxrotH 

We shall consider the pressure p to be an arbitrary function of the 
density p and the entropy s. In the steady case (d/at = 01, after in- 
tegrating the “freezing of magne t’c lines” equation, we may re-write the i 
system (1.1) as 

divH=O, div pV = 0, div psV = 0, VxH=cvJ 

o(V2/2+F)+(1/p)Gp=VxrotV-(1/4tip)HxrotH 
(1.2) 
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where ib is the electric field potential (E = -.V@l. 

LRt (q,, q2, q3) be a Cartesian coordinate system, and let all the 
basic physical quantities: velocity, magnetic field, density, entropy, 
and also potentials Q) and F, be independent of the third coordinate. 
Following Gromeka [Z-6 1, the two-parameter solenoidal fields H and pV 
are represented by 

Here the generalized stream functions + and I&, as well as the third 
components of the velocity and magnetic field v and h, are arbitrary 
functions of the coordinates (ql, qz); e is the unit vector in the third 
direction. 

Substituting (1.3)in the (adisbatic)energy equation and in the third 
component of the "frozen magnetic lines" equation (1.2), and solving the 
obtained Jacobian equation for the case when a transverse velocity com- 
ponent is present (lr/,'-f Of, we get 

* = s(& $0 =*0(E)? 

Here 1G_, %, s and C$ are arbitrary 

Substituting (1.4) into the first 

functions of their arguments. 

and second components of the frozen 
field equation, and into the third component of the momentum equation, 
in (1.2). we obtain, after integration 

pq’v - $,‘h = cpw, 4nq,'v - $‘h = 4nQ’ 

Everywhere, the prime+ (') denotes differentiation with respect to the 
argument. Ihe electric potentials d,= @((4‘> and Q= Q(t) are arbitrary 
functions of the variable 5‘. If the determinant of the above linear 
system in v and h does not equal zero: 4s ($a')* F*p($')*, then solving, 
we find v and h 

Using relations (1.3) and (1.4), and the fact that for any two-para- 
meter solenoidal field 8. the relation rot E = Vh x e - Atbe obtains. we 
rewrite the first two components of the mcnzentum equation in (1.2) into 
the form 

= 
{ $0’ [y$- 40 + $(vsov $)] - & $#A$} vlj (1.6) 
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We introduce the “effective transverse” pressure P, equal to the sum 
of the longitudinal magnetic pressure (that of the magnetic field along 
the third axis) and the gas pressure 

P (P, E) = P (p, s) -t h2 / 8n (1.7) 

Then, in the general case where the density and entropy are function- 
ally independent, d(pl ()/b'(q,, q2) f 0, the general solution of (1.6) 
has the form 

Here o is an arbitrary function of [; hence, the lower limit of inte- 
gration may be omitted. lbe relation (1.8) represents an exact solution 
of the vector equation (1.6); substitution of (1.8) in (1.6) results in 
an identity. 

Physically, the first relation in (1.8) represents the law of change 
of the third component of the vorticity. ‘lbe second relation in (1.8), 
representing the law of change of energy per unit mass, is the general- 
ized Bernoulli integral for the case of rotational motion of a conduct- 
ing gas. 

Tbus, if one of the Cartesian coordinates is ignorable, then in the 
steady case, the problem reduces (under very general hypotheses) to the 
solution of a system of two scalar differential equations (1.8) for the 

determination of p and 5. 

We remark that certain methods, similar to those used above, have been 

used by other authors C8-14 1 L 

2. C&aplygin transformation. Let there be no external body 
force (F = 0). We cross multiply the equations in (1.8), and multiply 
them by an arbitrary function of p and 5‘. In order that the resulting 
equation may be reduced to “canonical” form 

it suffices that the following condition hold: 
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Condition (2.2) is found by identifying the equation obtained from 

(1.8) with equation (2.1) and eliminating 8 (p, c). The general solution 
of (2.2) has the form 

where Il is an arbitrary function of J$‘. Now the parameter 4 does not 

come out to be physically arbitrary: to each form of the functions Ifi= 

&,//,r5’) and 9 = Y’&!) corresponds a particular character of the fields of 
the physical variables. The relation (2.3) imposes a restriction on the 

form of the equation of state p = p(p, s) and on the nature of the 

motion. In what follows, we shall consider only those motions and states 

of the gas which satisfy condition (2.3). 

Solving the canonical equations (2.1), and 

equation of (1.8) and the condition (2.3), we 

system 

XW=&j%xe, (WY = 2 @u)2, 

also using the second 

obtain the “csnonical” 

to which the Chaplygin transformation may be applied (15 I. Apparently, 

the first to apply this transformation to magneto-gasdynamics was 

Nochevkina El6 I, and somewhat later, it was also used by several other 

authors f 17-19 ] . Applying to system (2.4) a contact transformation [ 7, 

15 1, we get 

where 6 is the angle between the vector VC# and the ql-axis. The con- 

nection with the space variables is given by the relation 

d (qI + iq,) = -$ (idg + +- dq) 

The present transformation is mathematically equivalent to a trans- 

formation into “the hodograph plane”, although the motions considered 

(2.6) 

need not be plane motions (the velocity has a third component which, in 

general, is non-zero, v f 0). 

‘Ilam, (2.5) represents the desired system of linear homogeneous equa- 

tions (for the functions 4 and &, the coefficients of which depend on 

the independent variable 8 but not on 8. lhe condition of ellipticity 

is: 

d (~8)~ / da2 > 0 (2.7) 

To analyze and solve this system in various limiting cases, well- 
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known methods [7,15 1 may be successfully employed. In the general case, 
it appears natural that the results of Ovsiannikov [20,21 1 ,may be 
employed. 

'Ihe cases considered in this section (and also later) are natural 
generalizations of some earlier works of similar nature. 'Ihese include, 
first of all, the results for plane rotational flow of ordinary gas ob- 
tained by Sedov 17 1 and Rudnev [22,23 I, and also the later studies of 
Nochevkina 116 ] and Iur'ev [17 1 e for various limiting cases of magneto- 
gasdynamics. 

3. Sore simplest physical properties of "Chaplygin" flows. 
Using relations (1.51 and (2.31, we reduce the expression (1.3) for the 

velocity and magnetic field to the form 

We introduce the "transverse" magnetic energy (/L,.$ and kinetic energy 
(p,) per unit volume 

piT=(H? + Hz2)l& pv=p(b2+~2”,/2 (3.2) 

'J&en, substituting (3.1) in (3.2) and using (2.4), we get 

(VY dlJ 
cLH=xG* 

Pv_J%')2d~ -- 
p G' (3.3) 

We consider the difference (~1 and ratio (E) of the “transverse” 

energies per unit volume 

p='v-PHt e=PV/pH (3.4) 

Substituting (3.3) into (3.4), we obtain 

(3.5) 

Therefore, the difference of the energies is shown to depend only on 
the basic parameter (I) of the theory, p = p(g). Moreover, 8 is posi- 
tive, if the density of the transverse kinetic energy exceeds the 
density of the transverse magnetic energy; $ is negative if the density 
of the kinetic energy is less than that of the magnetic energy. We re- 
call that all considerations are based on 8 f 0. From relations (2.3) 
and (3.3), we find 

Substituting (1.7) into (3.61, we get 
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n=-(PV+P +h2/83q (3.7) 

i.e. the quantity ll is taken with opposite sign to the sum of the trans- 

verse kinetic energy, the thermal energy, and the longitudinal magnetic 

energy, per unit volume. 

Substituting (2.4) into (2.5), we reduce the Chaplygin equation to 

the form 

(3.8) 

Substituting (2.4) into (2.7), th e ellipticity condition for system 

(3.8) may be written as 

-2Il jsIY<1 (3.9) 

In what follows, we shall call “constrained” those parts of the flow 

in which dII/dB = 0. Consequently, at the “constraint points”, the 

transverse components of the velocity and magnetic field vanish. The 

roots of the equation n’(8) = 0 will be denoted by 6,. The physical 

quantities corresponding to &$ = 8, will be denoted by a lower asterisk 

and will be called the parameters of the constrained flow. We observe 

that the conventional [ 7,15 1 “constrained” flows are contained as 

special cases in those given here. 

4, Motion in longitudinal magnetic field. Let there be no 

transverse component of the magnetic field, II;-= 0. Then we see from 

(2.3) 

8 = (%‘)2 / P (4.1) 

From (3.3), (3.5), and (4.1), it follows that the transverse kinetic 

energy per unit volume is 

In addition, from (3.5), (3.6), and (4.2), 

P=-&(m) 

we get 

(4.2) 

(4.3) 

From (4.2) and (4.3), we conclude that both the effective pressure 

and the transverse kinetic energy depend only on the basic parameter $’ 

If the pressure is a function of the density to some power, p = ~7, 

then comparing the expressions for the effective pressure, from (1.5), 

(l.?), (4.1) and (4.3), after integrating and identifying, we obtain a 
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relation which is general for y f 2: 

The constants fi*, p, and 8% are the parameters of the constrained 
flow. From (4.2) and (4.41, it follows that real pressures are described 
by sufficiently large values of the basic parameter %,<a. Substitut- 
ing (4.4) into (3.91, the ellipticity condition is reduced to the form 

(4.5) 

If the longitudinal magnetic field is sufficiently small (he2/8n<< 
p,), then from (4.5) follows the approximate condition of elllpticity, 
similar to the well-known expression in ordinary gas dynamics 

1 - 
2 -f-l 

i-3 T -I- 1 
<+I (4.6) 

In the case of a strong longitudinal magnetic field (p* << he2/8rr), 
the following approximate ellipticity condition follows from (4.5): 

2,‘3<&/8,<1 (4.7) 

Substituting (4.1) and (4.4) into (3.1), we obtain the following ex- 
pressions for the velocity and magnetic field: 

(4.8) 

where v = v([> is an arbitrary function of 5‘. 

If the pressure is proportional to the square of the density (y = Z), 

then from analyzing 
tegrating and using 

relations (1.51, (1.71, (4.1) and (4.31, after in- 
some transformations, we get: 

The constants PI and 8, are parameters of constrained flow, and h, = 
h,(c) is an arbitrary function of [. Substituting (4.9) into (3.91, we 
arrive at the ellipticity condition (4.61, (4.71, which.coincide for 

Y” 2. 

Thus, a longitudinal magnetic field does not introduce any qualitative 
difference to the gasdynamical condition of ellipticity of the flow. 
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We remark that many results, concerning the rotational flow of a con- 
ducting gas in a magnetic field perpendicular to the plane of the flow, 
are contained in the work of Nochevkina [16 1, 

Setting the magnetic field and the third component of the velocity to 
zero, we arrive at the relations equivalent to the corresponding results 
of Sedov [7 1 and Rudnev [22,23 1. 

5. Ordinary gas dynamics. 
to (4.6) and (4.8), 

Setting h* = 0 in the relations (4.1) 
we obtain the corresponding results for the adiabatic 

motion of a non-conducting gas. Comparing the well-known [7 1 equation 
of state of an ideal, perfect, gas 

(5.1) 

with (4.1) and (4.4), we see that, without loss of generality, the para- 
meters d and 4‘ may be chosen in the following manner: 

BL$exp(-J-), %= exp(-$) (5.2j 

Substituting (5.2) into (4.8), we obtain an expression for the velo- 

city: 

(5.3) 

We obtain the condition of ellipticity for the flow, upon substitut- 
ing (5.2) into (4.5) 

1 
2 Y-l 

( ) ~ 

r+l 
<hP,pexp~<l (5.4) 

where 8, is the parameter of the constrained flow. The relation (5.4) 
represents a generalization of a similar 17 ] condition for isentropic 
flow. In the case of plane problems, Sedov 17 1 and Rudnev 122,23 1 have 
arrived at similar results by somewhat different means. 

6‘ Motion with a magnetic field of arbitrary orientation. 
Let the pressure be a function of the density to some power, p = py. 
'lhen by analyzing the relations (1.5), (1.7) and (2.3), it follows that 
for arbitrary y in the general case #' = const. If there is a transverse 
component of the magnetic field ($' f O), then, without loss of general- 
ity, we may set 

dg=dy#-&i (6.1) 

Then, from (2.3), (3.5) and (6.1), we obtain 
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8=&-l (6.2) 

From (2.3) and (6.21, we obtain the following expression for the 
effective pressure: 

P= - $p) (6.3) 

‘Ihe longitudinal 
the expressions 

magnetic pressure and the parameter Il are given by 

(6.4) 

The constants he, p and c are parameters of constrained flow. From 
the relations (3.11, (8.11, (2.2) and (6,4), we find the expressions for 
the magnetic field and velocity 

(8 - l)H=~vrp+h,(~,--l)e 
(6*5) 

(e - 1) V = $==~$V~I + (e - 1)~ (%, e) e 

From the analysis of relations (3.81, (3.9) and (6,4), we obtain a 
hypersurface (in the a, & y, l space), separating the region of elliptic 

flows from the region of hyperbolic flows 

We introduce the notations 

Tben for a monotomic gas fy = S/3), the hypersurface (6.6) in the 
(a, a*, A*) space assumes the form 

From an analysis of (6.61, it follows that there exist several zones 

of elliptic and hyperbolic flows, mutually alternating. In particular, 
for velocities of ordered motion smaller than that of thermal motion, 
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hyperbolic flow is possible; and for those larger, elliptic flow is 
possible. Such conclusions (under some additional restrictions) are con- 
tained in the investigations of Iur’ev [17 1 and Kogan [ 24 I. 

Ihe author thanks 1.1. Nochevkina, N.B. Saltenova, K.P. Steniukovich’, 
E.F. 'l'kalich, F.I. Frank1 and I.M. Iur'ev for discussions of several of 
the results in this paper. 
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